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Structure of the Code: 
1. “profileR1.m” –to get the initial point of contact between the rail and wheel profiles and finally getting 

the polynomial fit with origin at initial point of contact. This is done by fixing the flange gap 8mm and then 

moving the wheel profile to get the point of contact (reducing the minimum distance between the two 

profiles). 

%rail  
clc; clear all; 
P1=[-33.04,-6.64];P2=[-26.05,-2.30482898]; P0=[-23.03833333,-14.95116695]; 
[x,y]=arc(P1,P2,P0); 

  
P1=P2;P2=[-10.25,-0.1751553]; P0=[-7.51666667,-80.12844722]; 
[a,b]=arc(P1,P2,P0); 
x=[x,a];y=[y,b]; 
P1=P2;P2=[0,0]; P0=[0,-300]; 
[a,b]=arc(P1,P2,P0); 
rail=[[x,a];[y,b]]; 

  
%wheel 
P2=[-34.52650895,-0.18119552];P1=[-40.27,-3.23]; P0=[-31.02344007,-

13.73584448]; 
[x,y]=arc(P1,P2,P0); 
P1=P2;P2=[-22.8367359,2.10716785]; P0=[-9.50458834,-97.00011665]; 
[a,b]=arc(P1,P2,P0); 
x=[x,a];y=[y,b]; 

  
P1=P2;P2=[-0.48400193,3.98815518]; P0=[15.99541166,-325.60011665]; 
[a,b]=arc(P1,P2,P0); 
wheel=[[x,a];[y,b]]; 
global zeta_rP zeta_wP ; 
nrr=rail(1,:);  zrr=rail(2,:); 
f = polyfit(nrr,zrr,9); 
zeta_rP=poly2sym(f); 
nwr=wheel(1,:);  zwr=wheel(2,:); 
f = polyfit(nwr,zwr,9); 
zeta_wP = poly2sym(f); 

  
%%Vertical Distance Minimization  
func = -(zeta_rP - zeta_wP); 
x = -25:0.01:-5; 
distance = subs(func); 
plot(x,distance); 
[minimum,i] = min(distance); 
x_contact = x(i) 
y_contact = minimum 
%%Repeat 
rail(1,:)=rail(1,:)-(x_contact);rail(2,:)=rail(2,:); 
wheel(1,:)=wheel(1,:)-(x_contact);wheel(2,:)=wheel(2,:); 
nwr=wheel(1,:);  zwr=wheel(2,:); 
f = polyfit(nwr,zwr,9); 
zeta_wP = poly2sym(f)-y_contact; 
nrr=rail(1,:);  zrr=rail(2,:); 
f = polyfit(nrr,zrr,9); 
zeta_rP=poly2sym(f); 
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%%Update 
x=0; 
V_shift = subs(zeta_wP); 
zeta_rP = zeta_rP - V_shift; 
zeta_wP = zeta_wP - V_shift; 
%plot 
fplot(zeta_rP,[-10,10]); 
hold on;grid on; 
fplot(zeta_wP,[-10,10]); 

  
delta_w = atan(diff(zeta_wP)); 
delta_r = atan(diff(zeta_rP)); 

 

2. “solve1” – to write 14 equations. 

 
function F = solve1(x) 
global Uy 
global rad yr 
% r0=500; 
% y0=0; 
r0=rad; y0=yr; 
L=1100; 
%Wheel and rail (Right) 
F(1) = x(3) - (5139597554770761*(-x(1))^9)/618970019642690137449562112 - 

(978272914433037*(-x(1))^8)/2417851639229258349412352 - (541800308747879*(-

x(1))^7)/19342813113834066795298816 + (7169221819261939*(-

x(1))^6)/37778931862957161709568 + (4089400285490287*(-

x(1))^5)/4722366482869645213696 - (2387928271314221*(-

x(1))^4)/73786976294838206464 - (578189731934337*(-

x(1))^3)/9223372036854775808 - (2125149540870471*(-

x(1))^2)/73786976294838206464 + (863925489082307*(-x(1)))/9007199254740992; 
F(2) = x(4) - (495229314623629*(-x(2))^9)/38685626227668133590597632 + 

(7142424370555727*(-x(2))^8)/38685626227668133590597632 + 

(5288588683557781*(-x(2))^7)/604462909807314587353088 - (840349606378163*(-

x(2))^6)/4722366482869645213696 - (8088071278431591*(-

x(2))^5)/9444732965739290427392 + (4912984140153015*(-

x(2))^4)/147573952589676412928 + (2790363789710575*(-

x(2))^3)/36893488147419103232 - (4315180088559653*(-

x(2))^2)/576460752303423488 + (6911206147709207*(-x(2)))/72057594037927936 - 

86020444518536962733730930817909/15474250491067253436239052800000000000000000

0; 
%Wheel and rail (Left) 
F(3) = x(7) - (5139597554770761*(-x(5))^9)/618970019642690137449562112 - 

(978272914433037*(-x(5))^8)/2417851639229258349412352 - (541800308747879*(-

x(5))^7)/19342813113834066795298816 + (7169221819261939*(-

x(5))^6)/37778931862957161709568 + (4089400285490287*(-

x(5))^5)/4722366482869645213696 - (2387928271314221*(-

x(5))^4)/73786976294838206464 - (578189731934337*(-

x(5))^3)/9223372036854775808 - (2125149540870471*(-

x(5))^2)/73786976294838206464 + (863925489082307*(-x(5)))/9007199254740992; 
F(4) = x(8) - (495229314623629*(-x(6))^9)/38685626227668133590597632 + 

(7142424370555727*(-x(6))^8)/38685626227668133590597632 + 

(5288588683557781*(-x(6))^7)/604462909807314587353088 - (840349606378163*(-

x(6))^6)/4722366482869645213696 - (8088071278431591*(-

x(6))^5)/9444732965739290427392 + (4912984140153015*(-

x(6))^4)/147573952589676412928 + (2790363789710575*(-



ME660 

x(6))^3)/36893488147419103232 - (4315180088559653*(-

x(6))^2)/576460752303423488 + (6911206147709207*(-x(6)))/72057594037927936 - 

86020444518536962733730930817909/15474250491067253436239052800000000000000000

0; 
%Delta equations 
F(5) = -x(9)  + atan((46256377992936849*x(1)^8)/618970019642690137449562112 - 

(978272914433037*x(1)^7)/302231454903657293676544 + 

(3792602161235153*x(1)^6)/19342813113834066795298816 + 

(21507665457785817*x(1)^5)/18889465931478580854784 - 

(20447001427451435*x(1)^4)/4722366482869645213696 - 

(2387928271314221*x(1)^3)/18446744073709551616 + 

(1734569195803011*x(1)^2)/9223372036854775808 - 

(2125149540870471*x(1))/36893488147419103232 - 

863925489082307/9007199254740992); 
F(6) = -x(10) + atan((4457063831612661*x(2)^8)/38685626227668133590597632 + 

(7142424370555727*x(2)^7)/4835703278458516698824704 - 

(37020120784904467*x(2)^6)/604462909807314587353088 - 

(2521048819134489*x(2)^5)/2361183241434822606848 + 

(40440356392157955*x(2)^4)/9444732965739290427392 + 

(4912984140153015*x(2)^3)/36893488147419103232 - 

(8371091369131725*x(2)^2)/36893488147419103232 - 

(4315180088559653*x(2))/288230376151711744 - 

6911206147709207/72057594037927936); 
F(7) = -x(11) + atan(-(- (46256377992936849*(-

x(5))^8)/618970019642690137449562112 - (978272914433037*(-

x(5))^7)/302231454903657293676544 - (3792602161235153*(-

x(5))^6)/19342813113834066795298816 + (21507665457785817*(-

x(5))^5)/18889465931478580854784 + (20447001427451435*(-

x(5))^4)/4722366482869645213696 - (2387928271314221*(-

x(5))^3)/18446744073709551616 - (1734569195803011*(-

x(5))^2)/9223372036854775808 - (2125149540870471*(-

x(5)))/36893488147419103232 + 863925489082307/9007199254740992)); 
F(8) = -x(12) + atan(-(- (4457063831612661*(-

x(6))^8)/38685626227668133590597632 + (7142424370555727*(-

x(6))^7)/4835703278458516698824704 + (37020120784904467*(-

x(6))^6)/604462909807314587353088 - (2521048819134489*(-

x(6))^5)/2361183241434822606848 - (40440356392157955*(-

x(6))^4)/9444732965739290427392 + (4912984140153015*(-

x(6))^3)/36893488147419103232 + (8371091369131725*(-

x(6))^2)/36893488147419103232 - (4315180088559653*(-x(6)))/288230376151711744 

+ 6911206147709207/72057594037927936)); 

  
%Right side equations 
F(9) = Uy - y0 - r0*x(13) - x(1) + x(2); 
F(10) = x(14) + L*x(13) + x(3) - x(4); 
F(11) = -x(13) + x(9) - x(10); 

  
%Left side equations 
F(12) = Uy - y0 - r0*x(13) + x(5) - x(6); 
F(13) = x(14) - L*x(13) + x(7) - x(8); 
F(14) = -x(13) - x(11) + x(12); 

  
F = double(F); 

  
End 
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3. “Plots.m” – GUI for calculating the solution and showing the plots. 

 

function varargout = Plots(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Plots_OpeningFcn, ... 
                   'gui_OutputFcn',  @Plots_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
function Plots_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 

 
function varargout = Plots_OutputFcn(hObject, eventdata, handles)  
varargout{1} = handles.output; 

 
function edit1_Callback(hObject, eventdata, handles) 
function edit1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function edit2_Callback(hObject, eventdata, handles) 
function edit2_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function pushbutton1_Callback(hObject, eventdata, handles) 
global rad; global yr; 

  
rad=str2double(get(handles.edit1,'string')); 
yr=str2double(get(handles.edit2,'string')); 
Solution; 
function pushbutton2_Callback(hObject, eventdata, handles) 
global sol; global ax; 
axes(handles.axes1) 
cla reset 
plot(ax,sol(:,13)); 
grid on 
axes(handles.axes2) 
cla reset 
plot(ax,sol(:,14)); 
grid on 
axes(handles.axes3) 



ME660 

cla reset 
plot(ax,sol(:,1)); hold on; plot(ax,sol(:,5)) 
grid on 
axes(handles.axes4) 
cla reset 
plot(ax,sol(:,2)); hold on; plot(ax,sol(:,6)) 
grid on 
axes(handles.axes5) 
cla reset 
plot(ax,sol(:,3)); hold on; plot(ax,sol(:,7)) 
grid on 
axes(handles.axes6) 
cla reset 
plot(ax,sol(:,4)); hold on; plot(ax,sol(:,8)) 
grid on 

 

4. “newton.m”  is the code for multivariable newton-rephson method to solve 14 equations 
 

function x=newton(fname,x) 
f0=feval(fname,x); 
n=length(x); 
count=0; 

  
while (norm(f0) > 1e-12*max(1,norm(x)))*(count<60000) 
    epsil=1e-2; 
    E=eye(n)*epsil; 

     
    D=E; % initialization; will be overwritten 
    for k=1:n 
        temp=feval(fname,plus(x',E(:,k))); 
        D(:,k)=(temp-f0)/epsil; 
    end 

     
    x=(x'-D\f0')'; 
    f0=feval(fname,x); 
    count=count+1; 
end 

  
if count >=60000, x=inf; end 

 

5. “Solution.m” – to solve the 14 equations using “fsolve” function of MATLAB. Conversion of equation to 
“f(x) =0” form is required. 
 

clear; clc; 
global sol; global ax 
sol = zeros(101,14); 
j=0; 
global Uy; 

  
for i=-5:0.1:5  
j=j+1 
Uy = i; 
uy(j,1)=i; 
fun = 'solve1'; 
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x0=[0,0,0,0,0,0,0,0,0,0,0,0,0,0]; 
x = fsolve(fun,x0); 
sol(j,:) = x; 

  
end 
ax=uy; 

 

How to run the code: 
1. Run “Plots.m” 
Here, r0=500mm and y0=0mm is taken as default value (can be changed 
using GUI) 
2. Click on “solve” button. Waits for code run time (approx. 20 seconds) 
3. Click on “show plots” to see the plots. 
 

 
Plots: 
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Structure of the Code, Question 2: 
“Ques_2_1.m”: Solving the equations of motion given in Q2 to obtain the critical speed, by 

solving the Eigenvalue problem 

1. Defining Constants: 

V = 0.1:0.1:250; %In meter/sec 
m=1250; 
Iz= 700; 
Iy = 250; 
W = 78.48*1000; 
ky = 0.23*10^6; 
kshi = 2.5*10^6; 
cy = 0; 
cshi = 0; 
ro = 0.45; 
l = 0.7452; 
lambdao = 0.1174; 
epshilao = 6.423; 
deltao = 0.0493; 
sigma = 0.0508; 
f11 = 7.44*10^6; 
f22 = 6.79*10^6; 
f23 = 13.7*10^3; 
%Taken from slide (not given in the ques.) 
No = 39340; %normal force 
k = deltao*(1 - f23/(No*ro)); 

 

2. Equation for Ky and Kshi: 
 

Ky = ky + (2*No*epshilao/l)*(1 - f23/(No*ro)); 
Kshi = kshi + (2*No*l)*(-deltao +f23/(No*l)); 

 

3. Solution for Equations of Motion: 

for i=1:length(V) 
a2(i) = m; 
a1(i) = 2*f22/V(i); 
a0(i) = Ky; 
ba1(i) = (2*f23/V(i)) - (Iy*k*V(i))/(ro*l); 
ba0(i) = -2*f22; 

  
b2(i) = Iz; 
b1(i) = 2*f11*l*l/V(i); 
b0(i) = Kshi; 
ab1(i) = -( 2*f23/V(i) -  Iy*deltao*V(i)/(ro*l) ); 
ab0(i) = 2*f11*lambdao*l/ro; 

  
%polynomial Constants 
P4(i) = -a2(i)*b2(i); 
P3(i) = -a1(i)*b2(i) -a2(i)*b1(i); 
P2(i) = -a0(i)*b2(i) -a1(i)*b1(i) -a2(i)*b0(i) + ab1(i)*ba1(i); 
P1(i) = -a0(i)*b1(i) -a1(i)*b0(i) +ab1(i)*ba0(i) +ab0(i)*ba1(i); 
P0(i) = -a0(i)*b0(i) + ab0(i)*ba0(i); 

  
%roots 
p = [P4(i) P3(i) P2(i) P1(i) P0(i)]; 
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s(:,i) = roots(p); 
s_Real(:,i) = real(s(:,i)); 
s_Imag(:,i) = imag(s(:,i)); 
end 

 

4. Plot: Eigen Value plot for different values of Velocity(V) 
%% Plots 

plot(s_Real(1,:),s_Imag(1,:)); 
hold on 
plot(s_Real(2,:),s_Imag(2,:)); 
plot(s_Real(3,:),s_Imag(3,:)); 
plot(s_Real(4,:),s_Imag(4,:)); 
grid on 
axis([-700 200 -80 80]) 
title('Eigen Values plot for different values of Velocity (V)') 
ylabel('Imag') % x-axis label 
xlabel('Real') % y-axis label 
legend('s1','s2','s3','s4'); 

 
Maple calculation to get the coefficients of polynomial: 
 

 
 
How to run the code: 

1. Run “Ques_2_1.m” 
2. Click on “run button”, wait for the code run time (approx. 5 seconds) 
3. Open the figures to see the  Eigen Value plot for different values of Velocity(V) 
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Plot: 
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Structure of the Code, Question 3: 
“Question_3.m”: Solving the equations of motion for the two-axle rail vehicle given in Q3 to 

obtain the critical speeds, by solving the Eigenvalue problem 

1. Defining Constants: 

 
m = 1250; 
I_z = 700; 
I_y = 250; 
W = 78.48*(10^3); 
k_y = 0.23*(10^6); 
k_psi = 2.5*(10^6); 
c_y = 0; 
c_psi =0; 
r_o = 0.45; 
l = 0.7452; 
lambda_o = 0.1174; 
epsilon_o_star = 6.423; 
delta_o = 0.0493; 
sigma = 0.0508; 
f11 = 7.44*(10^6); 
f22 = 6.79*(10^6); 
f23 = 13.7*(10^3); 
k_phi = 1*(10^6); 
h = 3.7; 
d = 0.2; 
I = 700; 
m_b = 13500; 
I_xb = 161000; 
I_zb = 170000; 
I_yb = 250; 

  
N_o = 39340; %normal force 
kappa = delta_o*(1 - f23/(N_o*r_o)); 
V = 0.1:0.1:100; %In meter/sec 

 

2. Solving Equations of Motion: 

for i=1:length(V) 

  

  
%X1 = [y_1,psi_1,y_b,phi_b,psi_b,y_2,psi_2]; 
M1 = diag([m,I_z,m_b,I_xb,I_zb,m,I_z],0); 

C1 = [2*f22/V(i),   (2*f23/V(i)-I_y*kappa*V(i)/(r_o*l)),    0,   0,   0,   0,        0; 

      -(2*f23/V(i)-I_y*delta_o*V(i)/(r_o*l)), 2*f11*l*l/V(i),  0,   0,   0,   0,     0; 

      0,              0,             0,   0,   0,   0,                               0; 

      0,              0,             0,   0,   0,   0,                               0; 

      0,              0,             0,   0,   0,   0,                               0; 

      0,              0,    0,   0,   0,   2*f22/V(i),        (2*f23/V(i)-I_y*kappa*V(i)/(r_o*l)) ; 

      0,              0,    0,   0,   0,   -(2*f23/V(i)-I_y*delta_o*V(i)/(r_o*l)), 2*f11*l*l/V(i)]; 

 

 

 

         

 K1 = [2*N_o*epsilon_o_star/l*(1-f23/(N_o*r_o))+k_y, -2*f22, -k_y , k_y*d , -k_y*h , 0, 0 ; 

      2*f11*lambda_o*l/r_o , 2*N_o*l*(-delta_o + f23/(N_o*l))+k_psi, 0  , 0  , -k_psi , 0 , 0; 

      -k_y  , 0  , 2*k_y  , -2*k_y*d  , 0 , -k_y      , 0  ; 

      k_y*d  , -k_psi  , 2*k_y*d, 2*k_y*d*d+2*k_phi, 0  , k_y*d, 0 ; 

      -k_y*h  , -k_psi  , 0      , 0  , 2*k_y*h*h+2*k_psi, k_y*h , k_psi ; 

      0  ,  0   , -k_y   , k_y*d , -k_y*h , 2*N_o*epsilon_o_star/l*(1-f23/(N_o*r_o))+k_y , -2*f22; 

0 ,  0  , 0  , 0 , -k_psi , 2*f11*lambda_o*l/r_o , 2*N_o*1*(-delta_o + f23/(N_o*1))+k_psi]; 
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A= [zeros(7, 7), eye(7); -inv(M1)*K1, -inv(M1)*C1]; 
[eigvec,eigval]=eig(A); 
s_Real(:,i) = real(diag(eigval)); 
s_Imag(:,i) = imag(diag(eigval)); 
end 

 
for j=1:14 
  H(j) = max(find(s_Real(j,:)<0)); 
end 
 

Stable_Velocity = V(min(H(1:10)))*18/5;% Answer(in Kmph)    %ignoring s11 to 

s14 poles because they are oscillating and not dominant 
 

3. Plot: Eigen Value plot for different values of Velocity(V) 
%% Plots 
plot(s_Real(1,:),s_Imag(1,:)); 
hold on 
plot(s_Real(2,:),s_Imag(2,:)); 
plot(s_Real(3,:),s_Imag(3,:)); 
plot(s_Real(4,:),s_Imag(4,:)); 
plot(s_Real(5,:),s_Imag(5,:)); 
plot(s_Real(6,:),s_Imag(6,:)); 
plot(s_Real(7,:),s_Imag(7,:)); 
plot(s_Real(8,:),s_Imag(8,:)); 
plot(s_Real(9,:),s_Imag(9,:)); 
plot(s_Real(10,:),s_Imag(10,:)); 
plot(s_Real(11,:),s_Imag(11,:)); 
plot(s_Real(12,:),s_Imag(12,:)); 
plot(s_Real(13,:),s_Imag(13,:)); 
plot(s_Real(14,:),s_Imag(14,:)); 

  
grid on 
axis([-700 200 -80 80]) 
title('Eigen Values plot for different values of Velocity (V)') 
ylabel('Imag') % x-axis label 
xlabel('Real') % y-axis label 
legend('s1','s2','s3','s4','s5','s6','s7','s8','s9','s10','s11','s12','s13','s1

4'); 

 

How to run the code: 
1. Run “Question_3.m” 

2. Click on “run button”, wait for the code run time (approx. 5 seconds) 
3. Open the figures to see the  Eigen Value plot for different values of Velocity(V) 

 

 

 

Results: Stable_Velocity = 282.6000 
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Plot: 
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Introduction 

Linear set of equations:- 

 

We are trying to validate our answers for:- 

• Routh Hurwitz criterion 

• Root Locus plot and 

• Nyquist Criterion 

 
Given Parameters  
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Routh Hurwitz Criterion 

Solving equations (1) and (2) to satisfy Routh Hurwitz criterion as follows:- 

 
Substituting Y in Ψ leads to an equation of degree 4 in s, which is as follows:- 

p4s4 + p3s3 + p2s2 + p1s + p0 = 0 (5) 

Where, 

 

Now, in Routh matrices, R2 and R3 should be zero for critical velocity which provides us with our desired velocity. 

 

Code 
 

1. Q4_routh.m 
V = 10:0.1:250; %In meter/sec 
m=1250; 
Iz= 700; 
Iy = 250; 
W = 78.48*1000; 
ky = 0.23*10^6; 
kshi = 2.5*10^6; 
cy = 0; 
cshi = 0; 
ro = 0.45; 
l = 0.7452; 
lambdao = 0.1174; 
epshilao = 6.423; 
deltao = 0.0493; 
sigma = 0.0508; 
f11 = 7.44*10^6; 
f22 = 6.79*10^6; 
f23 = 13.7*10^3; 
% Taken from slide (not given in the ques.) 
No = 39340; %normal force 
k = deltao*(1 - f23/(No*ro)); 

  
Ky = ky + (2*No*epshilao/l)*(1 - f23/(No*ro)); 
Kshi = kshi + (2*No*l)*(-deltao +f23/(No*l)); 

  
for i=1:length(V) 
a2(i) = m; 
a1(i) = 2*f22/V(i); 
a0(i) = Ky; 
ba1(i) = (2*f23/V(i)) - (Iy*k*V(i))/(ro*l); 
ba0(i) = -2*f22; 
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b2(i) = Iz; 
b1(i) = 2*f11*l*l/V(i); 
b0(i) = Kshi; 
ab1(i) = -( 2*f23/V(i) -  Iy*deltao*V(i)/(ro*l) ); 
ab0(i) = 2*f11*lambdao*l/ro; 

  
%polynomial Constants 
P4(i) = -a2(i)*b2(i); 
P3(i) = -a1(i)*b2(i) -a2(i)*b1(i); 
P2(i) = -a0(i)*b2(i) -a1(i)*b1(i) -a2(i)*b0(i) + ab1(i)*ba1(i); 
P1(i) = -a0(i)*b1(i) -a1(i)*b0(i) +ab1(i)*ba0(i) +ab0(i)*ba1(i); 
P0(i) = -a0(i)*b0(i) + ab0(i)*ba0(i); 

  
%roots 
p = [P4(i) P3(i) P2(i) P1(i) P0(i)]; 

  
%finding no of poles on right hand side at different velocity 
poles(i)=rhstability(p); 
end 

  
H=find(poles>0); 
Stable_Velocity = V(H(1)-1)*18/5 

 

2. Rhstability.m 
%% Routh-Hurwitz stability criterion 
function z= rhstability(r) 

  
coeffVector = r; 
ceoffLength = length(coeffVector); 
rhTableColumn = round(ceoffLength/2); 

  
rhTable = zeros(ceoffLength,rhTableColumn); 
rhTable(1,:) = coeffVector(1,1:2:ceoffLength); 

  
% Check if length of coefficients vector is even or odd 
if (rem(ceoffLength,2) ~= 0) 
    % if odd, second row of table will be 
    rhTable(2,1:rhTableColumn - 1) = coeffVector(1,2:2:ceoffLength); 
else 
    % if even, second row of table will be 
    rhTable(2,:) = coeffVector(1,2:2:ceoffLength); 
end 

  
%% Calculate Routh-Hurwitz table's rows 

  
epss = 0.01; 
for i = 3:ceoffLength 

    
    % special case: row of all zeros 
    if rhTable(i-1,:) == 0 
        order = (ceoffLength - i); 
        cnt1 = 0; 
        cnt2 = 1; 
        for j = 1:rhTableColumn - 1 
            rhTable(i-1,j) = (order - cnt1) * rhTable(i-2,cnt2); 
            cnt2 = cnt2 + 1; 
            cnt1 = cnt1 + 2; 
        end 
    end 

     
    for j = 1:rhTableColumn - 1 

         
        firstElemUpperRow = rhTable(i-1,1);         
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        rhTable(i,j) = ((rhTable(i-1,1) * rhTable(i-2,j+1)) - .... 
        (rhTable(i-2,1) * rhTable(i-1,j+1))) / firstElemUpperRow; 
    end 

     
    if rhTable(i,1) == 0 
        rhTable(i,1) = epss; 
    end 
end 

  
% Compute number of right hand side poles(unstable poles) 
unstablePoles = 0; 
%   Check change in signs 
for i = 1:ceoffLength - 1 
    if sign(rhTable(i,1)) * sign(rhTable(i+1,1)) == -1 
        unstablePoles = unstablePoles + 1; 
    end 
end 
z=unstablePoles; 
end 

3. Q4_root_nyquist.m 
%% rootlocus and nyquist plot for stable velocity  
V=78.5; 
m = 1250; 
I_z = 700; 
I_y = 500; 
W = 78480; 
k_y = 0.23*10^6; 
k_psi = 2.5*10^6; 
c_y = 0; 
c_psi = 0; 
r_o = 0.45; 
l = 0.7542; 
lambda_o = 0.1174; 
epsilon_o = 6.423; 
delta_o = 0.0493; 
sigma = 0.0508; 
f11 = 7.44*10^6; 
f22 = 6.79*10^6; 
f23 = 13.7*10^3; 
% Data values 
N_o = 39240; 
K_y = k_y; 
K_psi = k_psi; 
kappa = delta_o*(1-f23/(N_o*r_o)); 

  
%getting the transfer function 
a1 = m; 
a2 = 2*f22/V; 
a3 = -(2*f23/V) + (I_y*kappa*V/(r_o*l)); 
a4 = 2*f22; 
a5 = K_y; 
b1 = I_z; 
b2 = 2*f11*l^2/V; 
b3 = -(2*f23/V) + (I_y*delta_o*V/(r_o*l)); 
b4 = 2*f11*lambda_o*l/r_o; 
b5 = K_psi; 

  
A1 = I_z; 
A2 = 2*f11*(l^2)/V; 
A3 = K_psi; 
B1 = a1*b1; 
B2 = a1*b2 + a2*b1; 
B3 = a1*b5 + b1*a5 + a2*b2 + a3*b3; 
B4 = a2*b5 + a5*b2 + a3*b4 + b3*a4; 
B5 = a5*b5 + a4*b4; 
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% 
G1 = tf([A1 A2 A3],[B1 B2 B3 B4 B5]); 

  
figure(1) 
rlocus(G1); 
figure(2) 
nyquist(G1); 

 
Root locus method 
Closed loop transfer function:- 

 
Where, open transfer function is:- 

 
 

 
 

 

 

Figure 1: Root Locus plot for given parameters at critical velocity
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Nyquist criterion 

For nyquist criterion the transfer function calculated is same as shown above, in the case of root locus for the matlab 
function. 

 
 
 
 

 

Conclusion 

Figure 2: Nyquist plot for given parameters at critical velocity 

In all 3 stability criterion, the critical velocity found was same and is equal to 282.60 km/hr. 
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Problem Statement:  
Obtain the Longitudinal natural frequencies and mode shapes for a vehicle-coupler 
model shown below. 
 

Given Parameters: 
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Equation of motions: 
 

For general case: 
 

 

 

 

 
 

&   |xci-xci-1|<= 2di 

 

 
For this problem, there are 3 masses so we will have three different cases:  
 

 
 m1=m2=m3=m   &  k1r=k2f=k2r=k3f=k  
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Case1. Both coupler are disengaged 
 
Equation of motion: 
  

𝑚𝑥1̈ = 0  (1) 
𝑚𝑥2̈ = 0  (2) 
𝑚𝑥3̈ = 0  (3) 

 
Natural frequency and mode shapes: 
 

S. No Natural Frequency 
(rad/sec) 

Mode Shape 

1. Ω1= 0 {1  0  0} 

2. Ω2= 0 {0  1  0} 

3. Ω3= 0 {0  0  1} 

 
 
Case2. One coupler is engaged and other is disengaged 
 
Equation of motion: 
  

𝑚𝑥1̈ −
𝑘

2
(𝑥2 − 𝑥1 − 𝑑) = 0  (1) 

𝑚𝑥2̈ +
𝑘

2
(𝑥2 − 𝑥1 − 𝑑) = 0  (2) 

𝑚𝑥3̈ = 0     (3) 
 
 
Natural frequency and mode shapes: 
 

S. No Natural Frequency 
(rad/sec) 

Mode Shape 

1. Ω1= 0 {0  0  1} 

2. Ω2= 0 {1  1  0} 

3. Ω3= 12.909 {1  -1  0} 
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Case3. Both coupler are engaged 
 
Equation of motion: 
  

𝑚𝑥1̈ −
𝑘

2
(𝑥2 − 𝑥1 − 𝑑) = 0    (1) 

𝑚𝑥2̈ +
𝑘

2
(𝑥2 − 𝑥1 − 𝑑) +

𝑘

2
(𝑥2 − 𝑥3 − 𝑑) = 0 (2) 

𝑚𝑥3̈ −
𝑘

2
(𝑥2 − 𝑥3 − 𝑑) = 0    (3) 

 
 
Natural frequency and mode shapes: 
 

S. No Natural Frequency 
(rad/sec) 

Mode Shape 

1. Ω1= 0 {1  1  1} 

2. Ω2= 9.1287 {1  0  -1} 

3. Ω3= 15.8114 {-0.5  1  -0.5} 

 
 
 
Matlab script to solve eigenvalue problem:  [v,d]=eig(k,m); 
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Algorithm: 
• Formulated the mass([M]) and stiffness([K]) matrix from the 6 equations of motion given 

to us in the assignment. 

• Obtained the matrix [D] = [M]-1[K]. 

• Calculated the eigenvalues(Natural Frequencies) and eigenvectors(Mode Shapes) of [D]. 

 

Code for the Assignment: 
File Name : Assignment_6.m 

 

 
 
 
How to run the code: 

1. Run “Assignment_6.m” 
2. Click on “run button”, wait for the code run time (less than 1 second) 
3. Open the variables “Natural_Frequencies” and “Mode_Shape” in MATLAB Workspace to 

get the desired results. 
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Results: 
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About SIMPACK 
 
Simpack is a general purpose Multibody Simulation (MBS) software used for the 
dynamic analysis of any mechanical or mechatronic system. It enables engineers to 
generate and solve virtual 3D models in order to predict and visualize motion, 
coupling forces and stresses. 
 
Simpack is used primarily within the automotive, engine, HiL/SiL, power 
transmission, railway, and wind energy industrial sectors, but can be applied to any 
branch of mechanical engineering. 
 
SIMPACK is used for the analysis and design of any type of rail-based vehicle or 
mechanism–from roller coasters, material handling systems or tramcars to complete 
articulated high-speed trains. Used worldwide by manufacturers and operators, 
SIMPACK is the leading MBS software for railway system dynamics. 
 
In Railway model, a wheelset could be directly imported with rail and wheel profiles 
and contact models are also available for the same.  
  
 
 
 
 
 
 
 
 
 
 
 
 
  



 

Plots for the wheelset 
(Folder: RRVD_Report\Winter Project\RAJESH\Wheelset\Plots) 
 
A general wheelset model was available on SIMPACK and the plots which are 
shown in the next few pages were available with the model.



 



 



 



 



 



 



 

 
 
 

  



 

Single Wheelset Model 
A single wheelset model with track, bolster is created in geometric modeling for basic 
verification of wheelset kinematics. 
It is tested for a constant velocity over a straight track.  
 
File : wheelset 

 
 
A single wheelset with springs in x, y and z direction were added just to see it’s 
motion behavior. The wheelset is not running properly in this case because of 
unstable eigenvalues. 
 
Folder: RRVD_Report\Rajesh\winters\Single Wheelset 
File: BogieWheelsetModel_V1 

 



 

Double Wheelset Model with Frame 
A simple bogie model is created through geometric modeling with 2 wheelsets and 
point to point forcing elements (springs).  
 
Folder : winters 
File : BogieWheelsetModel 

 
 
The wheelsets were connected to the frame using forcing elements in the x and z 
directions. After preloading the structure and making it come to its equilibrium state, 
eigenvalue analysis was done which showed that the structure was unstable(due to 
lack of forcing elements in the y direction). 
 
Folder : Winter Project/model2 
File : boggie 

 



 

Folder : RRVD_Report\Rajesh\Project Dr. NS Vyas\model2 
File: boggie 

 
 
 
The two wheelsets were now connected to the frame using point to point forcing 
elements in x, y and z directions and eigenvalue analysis of the model was done to 
check the stability of various modes. The wheelset was now running. 
 
Folder: RRVD_Report\Rajesh\winters 
File: BogieWheelsetModel 

 
 
 
 
 
 



 

Folder: RRVD_Report\Rajesh\winters 
File: BogieWheelsetModel_V1 

 
 
Remarks: Running, See the figure below. 

 
  



 

A model of the bogie was made but we did not proceed ahead with this model 
because of the complexity involved and were trying with the simple models of 
bogies. 
 
Folder : RRVD_Report\Rajesh\Project Dr. NS Vyas\model 
File: boggie 
Remarks: Not running. It is Just a model made. 

 
 
Folder : Folder: RRVD_Report\Rajesh\Project Winter\Final 
File: bogie 

 
 

  



 

Uncertainties imparted to the wheelset 
1. ​Camber 
 
Folder: RRVD_Report\Rajesh\Project Winter\RAJESH\wheelset_camber 
File: wheelset_camber 

 
 
Camber of 1 degree was the imparted to the wheelset and its motion behavior was 
visualized using Simpack post. The next figures show the output signals as well as 
the animation.  
 
Folder: RRVD_Report\Rajesh\Project 
Winter\RAJESH\wheelset_camber\wheelset_camber.output 
File: result 

 



 

2. ​Yaw 
 
Folder: RRVD_Report\Rajesh\Project Winter\RAJESH\Wheelset_initialyaw 
File: wheelset 

 
 
Initial yaw of 2 degrees was imparted to the wheelset and its motion behavior was 
visualized using Simpack post. The next figures show the output signals as well as 
the animation.  
 
Folder: RRVD_Report\Rajesh\Project Winter\RAJESH\Wheelset_initialyaw\wheelset.output 
File: wheelset_resultfile 

 
  



 

3. ​Toe in 
 
Folder : RRVD_Report\Rajesh\Project Winter\RAJESH\wheelset_toe_in 
File : wheelset_toe_in 

 
 
An initial toe in was given to the wheelset due to which the wheelset ran for some 
time but eventually derailed. The below figures from SImpack post show the motion 
behaviour on imparting the toe in to the wheelset. 
 
Folder : RRVD_Report\Rajesh\Project 
Winter\RAJESH\wheelset_toe_in\wheelset_toe_in.output 
File: result 

 
 
  



 

The wheelsets were connected on both sides by means of axles. The joints between 
the wheelset and the axle was created in such a way to mimic the bearing. In the 
axle the degree of freedom corresponding to the rotation of the wheelset was left 
free while all the other degrees of freedom were locked. But the 4 joints were over 
constrained (the solution is yet to be figured out) and the model did not run correctly. 
 
Folder: RRVD_Report\Rajesh\winters\v3_Aditya 
File: double_wheelset 

 
 
  



 

We tried to impart uncertainty in the full wheelset also by giving it a yaw of 2 
degrees. The model is running but the yaw given is automatically getting adjusted to 
zero because of maybe joint constraints and this needs to be figured out so that the 
motion behavior can be analysed. We had also tried to give some uncertainties by 
making one axle a little smaller than the other axle so that one of the wheelsets gets 
a yaw and tried to study the motion behavior but were not successful. 
 
Folder: RRVD_Report\Rajesh\winters 
File: BogieWheelsetModel_V3 

 
 
Folder: RRVD_Report\Rajesh\Project Winter\double_set 
File: double_wheelset 

 
 
 
 



 

The two wheelsets were connected using a single axle and two joints on the axle 
were defined as a joint and a connection. These joints had only one degree of 
freedom free so that it allowed the wheelsets to have an angular velocity and all the 
degrees of freedoms were locked. 
 
Folder: RRVD_Report\Rajesh\winters 
File : BogieWheelsetModel_V2 

 
 
Folder: RRVD_Report\Winter Project\RAJESH\wheelset trial\wheelset1.output 
File: results

 
 
  



 

Motion of wheelset on a curved track 
 
Folder: RRVD_Report\Winter Project\RAJESH\wheelset trial\wheelset1.output 
File: results_str_cur_str_track 

 
 
A curved track was made and the motion behavior of wheelset was observed which 
one can see in the next figure. This was done so as to see how the wheelset 
negotiates a radius of curvature. 
 
Folder: RRVD_Report\Winter Project\RAJESH\Wheelset\wheelset.output 
File: wheelset_resultfile 

 
  



 

Moving load on a beam using Ansys 
 

A beam with moving load was modelled to see the motion behavior of the rail track 
when the train is running on it. 
 
The beam is made of structural steel of dimension 190X5X5m3. The beam is made 
with multiple thin features on one of the surface using ANSYS Geometry Modeller.  
 
A 2D Static structural analysis is performed for a moving load on the beam. The 
moving load is imparted through a time-dependent forcing input which is applied on 
multiple sections of the face. The face of 5X190m is divided into 19 equal sections 
with different instants of forcing so that it approximately mimics a moving load 
problem.  
 
The beam was meshed using Mesh Sizing method using cubic elements of 1m3 . 
Below is the image of the meshed beam model. 

 
 
The figure below shows the total deformation of the beam when a force of 10kN is 
applied. 
The beam is fixed in all degrees of freedom at the opposite edges at the two corners 
of the beam. 
 
 
 



 

 
The figure below the Von Mises stress for the above given force and boundary 
conditions. 

 
 
This problem need to be extended to a circular beam but there were problems in 
creating thin features on the circular inner cross-section in ANSYS. We weren’t able 
to divide the circular cross-section into multiple sub-sections for applying moving 
load as done approximately in the above problem.  
 
 
 
 
 

  



 

Beam crack modeling 
 
ANSYS Mechanical APDL was used to model a beam with a crack.  
 
The beam is modeled as two half sections with solid 8 node brick elements. They are 
meshed individually and then all the nodes are connected except at the crack. A 
crack of 10% is initiated in the beam at the center. Structural analysis was performed 
on the beam for a constant force at one of the ends with the other end fixed.  
 
The moving load problem was not implemented on APDL beam model. 
 

 
 
 


